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Abstract
We consider anisotropic colloidal particles immersed in a solution of long,
flexible, and non-adsorbing polymers. For the dumbbell shapes of recently
synthesized particles consisting of two intersecting spheres, and for lens-shaped
particles with spherical surfaces, we calculate the isotropic and anisotropic
interaction parameters that determine the immersion free energy and the
orientation-dependent depletion interaction between particles that are induced
by the polymers. Exact results are obtained for ideal (random walk) polymer
chains.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In colloidal suspensions containing polymer chains, there are tunable effective interactions
between the colloid particles. Free non-adsorbing polymer chains avoid the space between
two particles, leading to an unbalanced pressure, which pushes them towards each other. Such
depletion forces for an isolated pair of immersed particles or for a single immersed particle
near a wall have been measured in recent experiments [1].

Here we consider anisotropic colloid particles. For the dumbbell shapes of recently
synthesized [2] particles consisting of two intersecting spheres, and for lens-shaped particles
with spherical surfaces, as in figure 1, we calculate the immersion free energy and the
orientation-dependent depletion interaction. The predictions are compared with results for
prolate and oblate ellipsoids [3–5], which also have a symmetry axis of revolution and a
symmetry centre of reflection.

The case of large particle to polymer size ratio can be investigated by means of small
curvature expansions of the Helfrich or Derjaguin type, but here we consider mesoscopic
particles which are small compared to characteristic polymer lengths such as the gyration
radius Rg, and we concentrate on the case of ideal, random walk, polymers. The well known
correspondence [6] between the statistics of long flexible polymers and critical field theories
allows us to use the small particle operator expansion [7–9] for predicting the polymer-induced
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Figure 1. Conformal mapping of a wedge onto a dumbbell or lens.

interactions. The operator weights in the expansion for dumbbells and lenses are calculated
by a conformal mapping to a wedge geometry.

We introduce the polymer–magnet analogy and small particle expansion in section 2,
discuss density profiles in a wedge and outside a dumbbell or lens in section 3, and evaluate, for
ideal polymers, the corresponding small particle amplitudes in the Gaussian model in section 4.
These results are compared with corresponding results for ellipsoids and, in section 5, with
a more general class of weakly anisotropic particles. In section 6 the amplitudes are used
to determine the orientation-dependent interactions, and in section 7 we summarize the new
results. Some technical details are relegated to appendices A–D.
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2. Polymer–magnet analogy and small particle expansion

In the polymer–magnet analogy the partition function of a polymer chain with ends at r1 and
r2 corresponds to the order parameter correlation function 〈ϕ12〉 of a Ginzburg–Landau model
or field theory [5, 6]. Here ϕ12 is the product �(r1)�(r2) of two order parameter fields �.
Ideal polymers correspond to a Gaussian Ginzburg–Landau model with Hamiltonian

H =
∫

dr

[
1

2
(∇�)2 +

t

2
�2

]
, (2.1)

where the integration extends over the volume outside the particles, and where the order
parameter satisfies the Dirichlet boundary condition

� = 0 (2.2)

at the particle surfaces, since we consider non-adsorbing polymers. We always consider length
scales much larger than the persistence and extrapolation lengths.

The free energy F it costs to immerse particles in a dilute polymer solution in an unbounded
space or in the half space bounded by a wall is determined by the polymer partition functions
with and without the particles, and is given by [4, 5]

F/p0 = −L
∫

dr1 dr2[〈ϕ12〉H+δH − 〈ϕ12〉H]. (2.3)

Here p0 = nkBT is the ideal gas pressure in the dilute solution with chain density n, andH+δH
and H denote Ginzburg–Landau Hamiltonians of the form (2.1) in the presence and absence of
the particles, respectively. The dependence of the double integral on the temperature deviation
t from the critical point is converted into the dependence on R2

g of −F/p0 by means of the
inverse Laplace transform L(..) = ∫

(dt/2π i) exp(3tR2
g/d)(..), where d denotes the spatial

dimension.
Consider particles with a size much smaller than Rg and a shape that is symmetric about

both a centre of reflection and an axis of revolution. Examples are rods, discs, ellipsoids,
dumbbells, and lenses. In the spirit of the operator-product expansion, a small mesoscopic
perturbation in a critical field theory can be represented by a sum of point operators. Thus, for
a single small particle [7–9]1 with centre at rP,

e−δH ∝ 1 + σI + σA, (2.4)

where

σI = a1ε(rP) + · · · , (2.5)

σA = b1∂
2
‖ ε(rP) + b2T‖‖(rP) + · · · (2.6)

are linear combinations of isotropic (I) and anisotropic (A) operators from the operator
algebra of the Ginzburg–Landau model, which reflect the symmetries of the particle shape
and boundary condition. Here ε ∝ −�2 is the energy density, ∂‖ is a derivative along the
particle axis, and T‖‖ is the diagonal component of the stress tensor of the field theory along
the axis.

Only the operators of lowest scaling dimensions x = d − 1/ν, d + 2 − 1/ν, d are
shown in equations (2.4)–(2.6), and their coefficients a1, b1, b2 by scale invariance must be

1 First, equation (2.4) applies to correlation functions with operators much further away from rP than the particle
size. Apart from contact terms [4], equation (2.4) may also be used for calculating integrals such as (2.3). Here we
only consider the leading isotropic and anisotropic contributions for small particle size, and the contact terms do not
contribute. The leading contact term has particle size exponent d and is isotropic [4].
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proportional to the particle size raised to the power x . For ideal chains (Gaussian model) the
Flory (correlation length) exponent ν equals 1/2, so that ∂2

‖ ε and T‖‖ have the same scaling
dimension d , and the b1 and b2 terms both contribute to the leading anisotropic behaviour.
For chains with excluded volume interaction (corresponding [6] to the N-vector model in the
limit N → 0), ν is larger than 1/2, and we expect that the b2 term dominates the anisotropic
behaviour of a small particle.

The coefficients a1, b1, b2 depend on the size and shape of the particle but are independent
of other distant particles, of the distant boundary wall of the half space, and2 of t . Thus
we evaluate the coefficients for a single particle in an unbounded space at t = 0, and then
use them to make predictions for the interaction between particles or a particle and a wall.
The coefficients can be evaluated from the density profiles 〈ε(r)〉 and 〈Tkl (r)〉 of the energy
density and the stress tensor that are induced by a single particle. While ellipsoids have been
considered in [4, 5] we concentrate here on dumbbells and lens-shaped particles.

3. Densities in a wedge and outside a dumbbell or lens

A system at the critical point containing a colloidal dumbbell composed of two overlapping
spheres, or a lens with two spherical surfaces, can be conformally mapped onto a critical
system filling a wedge with opening angle α, which is smaller or larger than π in case of the
dumbbell or lens, as in figure 1. As explained in more detail in [9], an inversion about the
point denoted by the heavy dot on the left-hand side of figure 1 maps the interior of the wedge
onto the exterior of a particle with a dumbbell or lens shape. The two boundary half planes
of the wedge and the edge where they meet are mapped onto the two spherical surfaces of the
particle and the circle C of diameter D where they intersect. D is related to the diameter L of
the two spheres by D = L sin(α/2). For α = 0, π , and 2π the particle on the right-hand side
of figure 1 becomes a dumbbell of two touching spheres, a spherical particle, and a circular
disc, respectively.

For the wedge the boundary-induced density profile of a scalar operator O, such as the
energy density ε, has the form [10–12]

〈O(r̂e, ρ,�)〉(i, j)
wedge = B1/2

O ρ−xO P̄i, j (α,�). (3.1)

Here the position vector r̂ is expressed in cylindrical coordinates (r̂e, ρ,�), where the edge of
the wedge is the axis. The component r̂e is parallel to the edge (and in general has dimension
d − 2), and the two-component vector perpendicular to the edge is determined by its angle �

with the symmetry half plane of the wedge, i.e. −α/2 � � � α/2, and by the distance ρ from
the edge. While P̄ is a universal scaling function, BO is the non-universal amplitude in the
pair correlation function

〈O(r)O(0)〉bulk = BOr−2xO (3.2)

of O in the bulk. The indices (i, j) characterize the surface universality classes3 of the two
boundary half planes � = (−α/2, α/2) of the wedge.

The corresponding density 〈O(r)〉particle outside a dumbbell or lens follows [10] from (3.1)
and the conformal mapping and has the form given in equations (5.14) and (5.10) of [9]. Turning

2 Compare the discussion in [4, 5] for the Gaussian model. In the notation of [5] with amplitudes β in equations (162)–
(165), a1

√
Bε = βI S̃d/

√
2, b1

√
Bε = (βVI(d − 2) + βVIId)S̃d/(4

√
2(d − 1)), b2 = (−βVI + βVII)/2 with S̃d given

in (4.1).
3 While we concentrate in sections 4–6 on non-adsorbing ideal chains represented by the Gaussian model with
Dirichlet boundary conditions, the discussion in section 3 does not specify the bulk and surface universality classes [10]
and allows also for other applications [9, 12].
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Figure 2. The normalized eigenvectors u(n) (�) (left) and u(N) (r) (right) of the stress tensor density
in a wedge and outside a dumbbell or lens. The vector field u(N) is determined by equation (3.10).
The symbols for lines and points correspond to those in figure 1.

to the energy density O = ε with scaling function P̄ = Ē and equal boundaries i = j , the
behaviour

Ēi,i (α,�) = e(i)
0 (α)[1 + e(i)

2 (α)�2/2 + · · ·] (3.3)

near the symmetry half plane � = 0 of the wedge determines the profile 〈ε(r)〉particle far from
the dumbbell or lens and yields [9]

a(i)
1 = Dxε e(i)

0 (α)/B1/2
ε (3.4)

and

b(i)
1 = a(i)

1

D2

8xε(xε + 1)

(
e(i)

2 (α) − xε

)
(3.5)

for two leading coefficients in the small particle expansion.
The boundary-induced density profile 〈Tκλ(r̂)〉wedge of the stress tensor in the wedge is

given by

〈Tκλ(r̂e, ρ,�)〉(i, j)
wedge = ρ−dτi, j (α)[δκλ − du(n)

κ (�)u(n)
λ (�)], (3.6)

where u(n)(�) is the unit vector normal to the half plane � = const which contains r̂, as in
the left-hand side of figure 2. Unlike (3.1) there is no non-universal amplitude in (3.6), and the
ρ-exponent and the �-dependence are trivial. Only the variation of the universal amplitude τ

with the opening angle α of the wedge depends on the bulk universality class and the surface
classes i, j , and remains to be determined. The stress tensor density (3.6) has a vanishing trace
and obeys the continuity equation, as discussed in appendix A.

We note two special cases. (i) For α → π and i = j the wedge becomes the half space
with a uniform boundary, and τ → 0 since the stress tensor density vanishes [10]. According
to the left-hand side of figure 2, only for τ = 0 is (3.6) consistent with the symmetries of the
half space. (ii) For α → 0, τ diverges as

τi, j → α−d(−�i, j ), (3.7)
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where �i, j is the universal amplitude which determines the stress tensor density in the parallel
plate geometry [10]. If the width of the film is ω and both tensor components are parallel to
the plates, 〈Tparallel,parallel〉(i, j)

film = ω−d(−�i, j).
Using the inversion transformation for the conformal stress tensor [13, 9] one finds from

equation (3.6) the stress tensor density

〈Tkl (r)〉(i, j)
particle = (D/�2)dτi, j (α)[δkl − du(N)

k (r)u(N)

l (r)] (3.8)

outside the dumbbell or lens. Here

�2 =
√

[r2 − (D/2)2]2 + D2r2
‖ (3.9)

with r and r‖ the distance of point r from the particle centre and its component parallel to
the particle rotation axis. The inverse length D/�2 in (3.8) equals b(r̂)/ρ(r̂), where b is
the dilatation factor | det(∂ r̂/∂r)|1/d of the conformal mapping, and diverges as (r‖, r) →
(0,D/2), as the circle C of intersection is approached. The unit vector u(N) in the particle
geometry is the counterpart of u(n) in the wedge geometry. It points along the surface normal
at r of the spherical surface portion SC,r which contains r and is bounded by the circle C . SC,r

is the image of the half plane � = const which contains r̂. With the particle axis ‖ as one of
the Cartesian directions,

u(N)
k (r) = �−2{δk‖[r2 − (D/2)2] − 2rkr‖}. (3.10)

The vector field u(N) for given D is shown on the right-hand side of figure 2. Both u(N)

and u(n) are independent of α and the bulk and surface universality classes i, j .
In leading order D � r ,

〈Tkl (r)〉(i, j)
particle → (D/r2)dτi, j (α)[δkl − dIk,‖Il,‖], (3.11)

with

Ik,m ≡ Ik,m(r) = δk,m − 2rkrm/r2. (3.12)

On comparing with the stress tensor correlation function

〈Tkl (r)Tmn(0)〉bulk = BT r−2d {(1/2)[Ik,mIl,n + Ik,nIl,m ] − (1/d)δklδmn} (3.13)

in unbounded bulk [13, 14, 9], equation (3.11) implies that

〈Tkl (r)〉(i, j)
particle → b(i, j)

2 〈Tkl (r)T‖‖(0)〉bulk, D � r, (3.14)

with the stress tensor contribution in the small particle expansion given by

b(i, j)
2 T‖‖ = −Ddτi, j (α)

d

BT
T‖‖. (3.15)

For the special case α → 0, where D → αL/2 and equation (3.7) applies, equation (3.15)
reduces to the expression b(i, j)

2 → (L/2)d�i, j d/BT for a dumbbell of two touching spheres
with diameter L, given in equation (2.15) of [9].

The form of 〈T 〉(i, j)
wedge in (3.6) has been calculated for special cases. See [10, 15] for

d = 2, [12] for symmetry breaking surfaces i = j as d → 4, and appendix B for Dirichlet
boundaries and α = π/2. Here we indicate how (3.6) can be derived in the general case. For r

on the particle rotation axis, 〈T 〉(i, j)
particle must have an eigenvector parallel to the axis, by rotation

symmetry. That the particle axis is the image of a circle in the plane r̂e = 0 of the wedge with
centre in the edge and passing through the centre of inversion, see the long dashes in figures 1
and 2, implies an eigenvector u(n) of 〈T 〉(i, j)

wedge tangent to this circle. Likewise, degenerate
eigenvectors perpendicular to the axis imply d − 1 degenerate eigenvectors perpendicular to
u(n). The simple form (3.6) of the symmetric, traceless, and conformal tensor density 〈T 〉
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for the wedge then follows from scaling (dilatation symmetry), translation, and reflection
symmetry in the edge-subspace, and the �-independence of τ is due to the continuity equation
of the stress tensor; see appendix A. In appendix B we also discuss, within the Gaussian
model, the more complicated form of the density 〈T (can)〉wedge of the canonical stress tensor,
which also obeys the continuity equation, but is not trace-free and not a conformal tensor, and
for which u(n)(�), in general, is not an eigenvector. Its eigenvalues depend on both ρ and �,
and some of the eigenvalues diverge as the boundary planes of the wedge are approached. The
simple form (3.6) is recovered on adding the ‘improvement-term’ [16].

We briefly comment on particle shapes where the horizontal axis on the right-hand side
of figure 1 (passing through the small triangle and square) is the rotation axis. These particles
resemble an apple (self-intersecting torus) for α < π and an American football for α > π ,
and could be conformally mapped onto a cone with opening angle α.

4. Gaussian model with Dirichlet boundaries

In d = 2 spatial dimensions, a wedge can be obtained from the half plane by means of an
appropriate conformal transformation. The dependence on the angle α only enters via the
transformation and is to a large extent model independent. For example, for i = j , the stress
amplitude τ is independent of the surface universality class i and equals [(π/α)2 −1]c/(24π),
where only the universal bulk constant c, the ‘conformal charge’, depends on the model
class. Using (3.7), this is consistent with the i -independent film amplitude �i,i = −πc/24
for a strip with equal boundary conditions [10]. Also the form of the scaling functions
P̄i,i = A(i)

O [(α/π) cos(π�/α)]−xO is to a large extent model independent [11] and is
completely determined by the bulk scaling index xO and the universal, but i -dependent, half-
space boundary amplitude A(i)

O of the scalar operator O. For i not equal to j , the stress
amplitude τi, j = −(c/(24π)) − �i, j/α

2 also depends on the boundary universality classes.
Since �i, j for i 
= j is in general different from −πc/24, τi, j is non-vanishing even for α = π ,
i.e. for the half plane with a non-homogeneous boundary [15].

In d > 2, however, no such conformal transformation exists, and the α-dependent
quantities P̄ and τ depend on the bulk and surface universality classes in a much stronger
way. In particular a bulk amplitude (like c) and the parallel plate amplitude, �i, j , are not
sufficient to predict τi, j (α).

For the Gaussian Ginzburg–Landau field theory (2.1) at the critical point t = 0 in d > 2
spatial dimensions, the scaling function Ē of the energy density in the wedge is given by

Ē = −〈�2(r̂)〉wedgeρ
d−2/(

√
2S̃d), S̃d = π−d/2�((d/2) − 1)/4, (4.1)

where we have suppressed the indices (i, j) = (D, D) with D for Dirichlet (see footnote 3).
The stress tensor in the Gaussian model is the sum [16]

Tκλ(r̂) = T (can)
κλ (r̂) − Iκλ(r̂) (4.2)

of the canonical stress tensor

T (can)
κλ (r̂) = (∂̂κ�(r̂))(∂̂λ�(r̂)) − δκλ(∇̂�(r̂))2/2 (4.3)

and the so-called improvement term with

Iκλ(r̂) = 1

4

d − 2

d − 1
[∂̂κ ∂̂λ − δκλ�̂]�2(r̂). (4.4)

Unlike T (can), the density of T in (4.2) has a vanishing trace and transforms as a conformal
tensor; see appendices B and C. The bulk amplitude BT in (3.13) equals [S̃d(d −2)]2d/(d −1)

for the Gaussian model.
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The boundary-induced densities 〈�2(r̂)〉wedge and 〈Tκλ(r̂)〉wedge follow in an obvious way
from the boundary-induced contribution δ〈ϕ̂12〉wedge of the propagator in the wedge

〈ϕ̂12〉wedge = 〈ϕ̂12〉bulk + δ〈ϕ̂12〉wedge, (4.5)

with

ϕ̂12 = �(r̂1)�(r̂2). (4.6)

For the special opening angles α = π/g, with g a positive integer, δ〈ϕ̂12〉wedge is a linear
combination of 2g − 1 bulk propagators from r1 to images of r2; see appendix B.

In order to determine e0, e2 in (3.3) and τ in (3.6) for arbitrary α, we use the representation
of [17] at the critical point

〈ϕ̂12〉wedge =
∫

dd−2q(2π)2−deiq(r̂e1−r̂e2)(2/α)

∞∑
m=1

Imπ/α(qρ<)Kmπ/α(qρ>)

× sin

[
mπ

(
1

2
+

�1

α

)]
sin

[
mπ

(
1

2
+

�2

α

)]
, (4.7)

where ρ< = min(ρ1, ρ2), ρ> = max(ρ1, ρ2), and I and K are modified Bessel functions. A
more explicit expression arises for (r̂e1, ρ1) = (r̂e2, ρ2). Using
∫ ∞

0
dx x2A−1 Imπ/α(x)Kmπ/α(x) = 22A−2 �(A)

�(1 − A)

∫ 1

0
dt tmπ/α t A−1(1 − t)−2A (4.8)

for 2A = d − 2 in order to rewrite the q-integral in a form where the m-summation can be
done [17], one finds

S̃−1
d 〈ϕ̂12〉wedge|(r̂e1,ρ1)=(r̂e2,ρ2) = −(2/α) sin(πd/2)ρ2−d

∫ 1

0
dt �d(t)

×
{

1 − tπ/α cos[(�1 − �2)π/α]

1 + t2π/α − 2tπ/α cos[(�1 − �2)π/α]

− 1 + tπ/α cos[(�1 + �2)π/α]

1 + t2π/α + 2tπ/α cos[(�1 + �2)π/α]

}
, (4.9)

where ρ ≡ ρ1 = ρ2 and

�d(t) = t (d−4)/2(1 − t)2−d . (4.10)

The expression in equation (4.9) satisfies the Dirichlet boundary conditions since the curly
bracket vanishes for �1 (or �2) equal to α/2 or −α/2. For �1 
= �2 the t-integral converges
in the interval 2 − (2π/α) < d < 4 of spatial dimensions d with the lower and upper limits
coming from the behaviours of the integrand for t ↘ 0 and t ↗ 1, respectively. The bulk
divergence (ρ|�1 − �2|)2−d for |�1 − �2| → 0 and d > 2 contained in (4.9) comes from
integrating the first term in curly brackets over a region near t = 1 where 1 − t is of the order
of |�1 − �2|.

A convenient way to evaluate the boundary-induced density

〈�2(r̂)〉wedge = lim
r̂1→r̂,r̂2→r̂

δ〈ϕ̂12〉wedge (4.11)

and its scaling function Ē(α,�) in (4.1) for d = 3 by means of equation (4.9) is based on
the observation that Ē is an analytic function of d in an interval that includes both d = 2
and d = 3 as interior points. Since the limit r̂1 → r̂, r̂2 → r̂ of the bulk propagator
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∝ |r̂1 − r̂2|2−d vanishes for d < 2 (while it is infinite for d > 2), one may replace δ〈ϕ̂12〉wedge

by 〈ϕ̂12〉wedge and use (4.9), in calculating the limit in (4.11) for d < 2. This leads to

Ē(α,�) = (
√

2/α) sin(πd/2)

∫ 1

0
dt �d(t)

×
{

1

1 − tπ/α
− 1 + tπ/α cos(2π�/α)

1 + t2π/α + 2tπ/α cos(2π�/α)

}
; d < 2, (4.12)

in terms of an integral which is well defined for 2 − (2π/α) < d < 2 and which has to be
analytically continued4 in order to obtain Ē for d = 3.

For e0(α) = Ē(α,� = 0) the integral in (4.12) becomes

J (α, d) =
∫ 1

0
dt �d(t)t

π/α 2

1 − t2π/α
, (4.13)

and the continuation can be made by rewriting J as the sum of J (1) and J (2), where

J (1)(α, d) =
∫ 1

0
dt �d(t)t

π/α

[
2

1 − t2π/α
− l(t)

]
, (4.14)

and

J (2)(α, d) =
∫ 1

0
dt �d(t)t

π/αl(t). (4.15)

Here

l(t) = α/π

1 − t
+ 1 − α

2π
(4.16)

are the first two terms in the Laurent series of 2/(1−t2π/α) around t = 1 so that the integrability
domain 2 − (2π/α) < d < 4 of J (1) extends up to d = 4. As a sum of beta-functions the
continuation to d = 3 of the integral J (2) is trivial and yields J (2)(α, 3) = −1, implying

e0(α) = (
√

2/α)[1 − J (1)(α, 3)], d = 3. (4.17)

Here J (1)(α, 3) follows from the right-hand side in equation (4.14) on replacing �d by
�3 = t−1/2/(1 − t), and for α arbitrary between 0 and 2π we have calculated it numerically.
Using equation (3.4), the corresponding results for a1 B1/2

ε /L = sin(α/2)e0(α) in the interval
0 < α < π and a1 B1/2

ε /D = e0(α) in the interval π < α < 2π are shown in figure 3.
Analytical results for some special values of α are given in table 1.

In the Gaussian model some amplitudes of isotropic operators beyond leading order
in (2.5), such as �4 and �6, are also determined by a1. The contributions 3β2

I �4/4! and
−15β3

I �
6/6! of the non-leading isotropic operators �4 and �6 to σI on the right-hand

side of equation (2.5) follow from the relations 〈�4〉particle = 3〈�2〉2
particle and 〈�6〉particle =

15〈�2〉3
particle between profiles due to Wick’s theorem. Here βI equals a1

√
Bε

√
2/S̃d and

appears in the leading isotropic contribution a1ε = −βI�
2/2 in the notation of [5]. For the

sphere with α = π and βI = (L/2)d−2/S̃d and the dumbbell of two touching spheres with
α = 0 and βI = (L/2)d−22(1 − 23−d)ζ(d − 2)/S̃d the role of these non-leading operators has
been discussed in [4] and [9], respectively.

4 For α = π/g, where δ〈ϕ̂12〉wedge is a superposition of images, Ē is an entire function of d. For example, Ē
is given by (2 cos �)2−d/

√
2 if α = π , and by (B.5) if α = π/2. For α arbitrary, the analytic continuation

of (
√

2/α) sin(πd/2)J (2) with J (2) from (4.15), and thus of e0, is an analytic function of d in the interval
2 − (2π/α) < d < 4. The continuation of e0, after taking the limit in (4.11) below d = 2, coincides with the result
from taking the limit above d = 2 directly, since both certainly coincide for α = π/g and are analytic in α. Similar
statements apply to Je in (D.7). Here the continuation of Je/S̃d is an analytic function of d for −(2π/α) < d < 4.
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Figure 3. The leading amplitude a1 in (2.5) for particles with Dirichlet boundary conditions in the
Gaussian model. Crosses denote results for dumbbells (0 < α/π < 1) and lenses (1 < α/π < 2).
Circles denote results for circumscribing prolate and oblate ellipsoids; see the paragraph containing
equations (4.19) and (4.20). The oblate ellipsoid and the lens coincide for α/π = 1 and 2, where
they become a sphere and a disc, respectively.

Table 1. Amplitudes for dumbbells with α = 0, π/2, the sphere (α = π ), and the disc
(α = 2π ) in three spatial dimensions. Numbers in brackets denote amplitudes for prolate ellipsoids
circumscribing the dumbbells. The values correspond to the crosses and circles in figures 3–5.

α 0 π/2 π 2π α

2−1/2 ln 2 2−1/2 − 2−2 2−3/2 2−1/2π−1

a1
√

Bε/L = 0.490 = 0.457 = 0.354 = 0.225 a1
√

Bε/D
(0.569) (0.508)

7ζ(3)/(64
√

2) (4 + 2−1/2)/(64
√

2) −5/(96π
√

2)

b1
√

Bε/L3 = 0.0930 = 0.0520 0 = −0.0117 b1
√

Bε/D3

(0.0561) (0.0304)

−πζ(3)/4 −π2−5/2 1/6
b2/L3 = −0.944 = −0.555 0 = 0.166 b2/D3

(−0.630) (−0.346)

To calculate the small particle anisotropy amplitude b1 in (3.5), we need the coefficient
∝ �2 of Ē . The contribution of order �2 to the curly bracket in (4.12) contains a factor 1− tπ/α

and leads to a convergent integral up to d = 4. Thus, no continuation is necessary, and

e0(α)e2(α) = (4
√

2π2/α3)

∫ 1

0
dt �3(t)t

π/α(1 − tπ/α)/(1 + tπ/α)3, d = 3, (4.18)

which on using (3.5) with (3.4), (4.17) leads to the results for b1 shown in figure 4 and in
table 1.

In appendix D we use similar continuations in d to calculate the stress tensor amplitude
τ (α) from (3.6) and (4.2)–(4.4) in d = 3 with the result (D.15). The second anisotropy
amplitude b2 then follows from (3.15) and the value d/BT = 32π2, with the results shown in
figure 5 and table 1.

It is interesting to compare dumbbells and lenses with ellipsoids. We compare a dumbbell
with α between 0 and π with a prolate ellipsoid that circumscribes the dumbbell, touches it at
the highest and lowest points, and has the same curvature at these points. Denoting by D‖ and
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Figure 4. The anisotropy amplitude b1 in (2.6).
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Figure 5. The anisotropy amplitude b2 in (2.6).

D⊥ the diameters of the ellipsoid parallel and perpendicular to the rotation axis,

D‖ = 2L cos2(α/4), D⊥ = √
2L cos(α/4). (4.19)

Similarly, we compare a lens with α between π and 2π with an oblate circumscribing ellipsoid,
so that

D‖ = D ctg(α/4), D⊥ = D (4.20)

where D ctg(α/4) is the width [9] of the lens. The amplitudes a1, b1, b2 of the ellipsoids
are shown as circles in figures 3–5. They follow5 from the expressions in footnote 2 and
equations (180)–(185) in [5], where the long axis [D‖, D⊥] and short axis [D⊥, D‖] of the
[prolate, oblate] ellipsoid is denoted by l and s, respectively.

As expected, the isotropic and anisotropic perturbations of the polymer system from
dumbbells are weaker and stronger, respectively, than from the circumscribing prolate
ellipsoids. The oblate ellipsoids have stronger isotropic perturbation amplitudes a1 and also
slightly stronger anisotropic amplitudes b1 and b2 than the lens.

5 For the circumscribing ellipsoids in equations (4.19) and (4.20), the parameters [ f, ξE] of [5] are given by
[2−1/2 L cos(α/4)

√
cos(α/2), 21/2/

√
1 − tg2(α/4)] and [(D/2)

√
1 − ctg2(α/4), 1/

√
tg2(α/4) − 1], respectively.
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5. Weak anisotropy

Consider the amplitudes a1, b1, and b2 for particles with a surface S′ which deviates only
slightly from the surface S of a sphere with radius R. S′ is obtained by shifting each surface
point rS of S by a small amount η(θS) towards the centre of S at the origin. Here θS is the
angle which rS encloses with the particle rotation axis, and we consider particles with a centre
of reflection so that η(θS) = η(π − θS). For a dumbbell or lens with α = π + δα, we choose
R = L/2 and obtain

η = δα(L/4)| cos θS| (5.1)

to first order in δα. As expected from figure 1, η in (5.1) is non-analytic at θS = π/2. At
the end of section 3 we have introduced apple-and football-shaped particles with α = π + δα

smaller and larger than π , respectively. Nearly spherical particles of this family are generated
by

η = δα(L/4) sin θS. (5.2)

For weakly anisotropic prolate and oblate ellipsoids with D‖ > D⊥ and D‖ < D⊥,
respectively,

η = D‖ − D⊥
2

sin2 θS, (5.3)

if we choose R = D‖/2.
In the presence of the weakly anisotropic particle the propagator is given by [5]

〈ϕ12〉 = 〈ϕ12〉sphere +
∫

dSη(θS)〈T⊥⊥(rS)ϕ12〉sphere (5.4)

to first order in η. Here
∫

dS is an integral over the surface S of the sphere, and T⊥⊥ is the
diagonal component of the stress tensor perpendicular to S. Due to the Dirichlet boundary
condition and the form (4.2)–(4.4) of the stress tensor, T⊥⊥(rS) can be replaced by (∂⊥�)2/2
in the correlation function in (5.4) with the result

〈T⊥⊥(rS)ϕ12〉sphere = [(d − 2)S̃d ]2 (r2
1 − R2)(r2

2 − R2)

R2(|r1 − rS||r2 − rS|)d
, (5.5)

and, from the behaviour of (5.4) for R � r1, r2, one finds6

a1

√
Bε − Rd−2/

√
2 = − (d − 2)�(d/2)√

2π�((d − 1)/2)
Rd−3

∫ π

0
dθS(sin θS)

d−2η(θS), (5.6)

b1

√
Bε/b2 = − 1

4
√

2πd/2

d + 1

d − 1
�((d + 2)/2), (5.7)

and

b2 = Rd−1 2π(d−1)/2

�((d + 1)/2)

∫ π

0
dθS (sin θS)

d−2[d(cos θS)
2 − 1]η(θS). (5.8)

Explicit expressions for dumbbells or lenses, apples or footballs, and ellipsoids in an arbitrary
spatial dimension d follow on inserting η from (5.1) to (5.3). In d = 3,

a1

√
Bε/L = 1

2
√

2
− δα

(
1

8
√

2
,

π

16
√

2

)
,

b2/L3 = δα

(
π

16
,−π2

64

) (5.9)

6 For example from (5.4) one may calculate 〈�2(r)〉 and 〈Tkl (r)〉, and from the behaviour for R � r obtain a1, b1,
and b2.
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for (dumbbell or lens, apple or football), and

a1

√
Bε = D‖

2
√

2
+

D⊥ − D‖
3
√

2
,

b2 = (D⊥ − D‖)D2 2π

15

(5.10)

for ellipsoids. In our first order calculation D may be either D‖ or D⊥. Note that b2 is negative
for the prolate shapes (dumbbell with δα < 0, football with δα > 0, and prolate ellipsoid with
D‖ > D⊥) and positive for the oblate shapes (lens with δα > 0, apple with δα < 0, and oblate
ellipsoid with D‖ < D⊥).

The amplitudes b1 follow from the amplitudes b2 above via the ratio

b1

√
Bε/b2 = − 3

8π
√

2
. (5.11)

For a nearly spherical particle with rotation axis and reflection symmetry, the ratio of the
anisotropy amplitudes b1 and b2 is independent of its shape, see (5.7) and (5.11), but the ratio
becomes shape dependent for larger deviations from spherical. For example,

b1

√
Bε/b2 = − 1

π

(
7

16
√

2
,

8 +
√

2

32
,

5

16
√

2
,

ln(2D‖/D⊥)

4
√

2

)
(5.12)

for a dumbbell of two touching spheres, a dumbbell with α = π/2, a disc, and an ellipsoidal
needle with D‖ � D⊥. For the dumbbell-lens and ellipsoid families the modulus of the
negative ratio b1

√
Bε/b2 is monotonically decreasing on increasing α from 0 to 2π and D⊥/D‖

from 0 to ∞, respectively, i.e. on changing from more prolate to more oblate shapes.

6. Induced interactions

The expressions (2.3) for the free energy cost F and (2.4) for the Boltzmann factor exp(−δH)

of a small particle determine the polymer-induced orientation-dependent interactions. In
particular, the leading anisotropic interactions between a particle and a wall,

F (p,w)

aniso = p0(cos2 ϑP){b1

√
Bε4π

√
2M′′

h(y) − b2[ f0(y) + (1/2) f0(y/2)]}, (6.1)

with the second derivative

M′′
h = 4[ f0(y) − (1/2) f0(y/2)] (6.2)

of the bulk-normalized polymer density in the half space [5] with respect to

y = zP/Rg, zP = particle−wall distance, (6.3)

and between two particles P, Q,

F (P,Q)

aniso = −p0(cos2 ϕP + cos2 ϕQ)
√

2a1

√
BεβVIIr

−1
PQ

× {12x−2 f2(x/2) + 6x−1 f1(x/2) + f0(x/2)}, (6.4)

with

x = rPQ/Rg, (6.5)

rPQ = |rP − rQ| = particle–particle distance (6.6)

and

βVII = [16
√

2πb1

√
Bε + b2]/2, (6.7)
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follow from (2.3) with the half space perturbed by exp(−δH) ∝ σA(P) and the bulk perturbed
by exp(−δH) ∝ σI (P)σA(Q) + σI (Q)σA(P), respectively. Here fn = inerfc is the n-fold
iterated complementary error function, ϑP is the angle between the particle axis and the surface
normal of the boundary wall, and ϕP, ϕQ are the angles between the axes of particles P, Q and
the distance vector rP − rQ of the two particles. F (P,Q)

aniso is proportional to the anisotropic part
of (∂2

‖P + ∂2
‖Q)K (rPQ), with K the density–density correlation function of ideal polymers in

bulk solution.
For a dumbbell or lens with any α the particle–wall expression predicts that, for small

y, the particle orientation parallel to the wall and, for large y, the perpendicular orientation,
have the lowest free energies. Note that Mh has a point of inflection, and M′′

h is positive
and negative for small and large y, respectively. With the values b1 and b2 from figures 4
and 5 above, the b1 and b2 contributions both favour the same, parallel orientation for small
y. For large y they favour different orientations, and their sum is ∝ − βVII f0(y/2), with βVII

from (6.7) in which b1 dominates.
The two-particle expression predicts that particles align parallel to their distance vector,

as expected from the attractive nature of the depletion interaction in a dilute polymer solution.
Qualitatively similar behaviour applies for prolate and oblate ellipsoids, where b1 and b2

can be taken from [4, 5] with the notation in footnote 2.

7. Summary and concluding remarks

We have studied the interaction between long flexible non-adsorbing polymers and mesoscopic
colloidal dumbbells and lenses. The shape of the colloids is characterized by a parameter α,
as shown in figure 1, and ranges from two touching spheres for α = 0, to a sphere for α = π ,
and to a disc for α = 2π .

For small colloids and ideal polymers the amplitudes a1, b1, and b2 in the small particle
expansion (2.4), which determine the isotropic and anisotropic features of the interaction, are
evaluated exactly for arbitrary α. They follow via the general relations (3.4), (3.5), and (3.15)
from the results (4.17), (4.18), and (D.15) for density profiles of the Gaussian model in a
wedge with opening angle α and Dirichlet boundary conditions, and are shown as crosses in
figures 3–5. We compare with corresponding amplitudes for ellipsoids that circumscribe and
touch the dumbbells and lenses; see equations (4.19), (4.20). Their values are shown as circles
in figures 3–5. Analytical results for some special values of α are collected in table 1.

We also consider weakly anisotropic particles of general shapes with rotation axis and
reflection centre; see equations (5.6)–(5.8). We find that the ratio b1/b2 in equations (5.7)
and (5.11) of the two anisotropy amplitudes of these particles is independent of their shape. In
particular we consider in equations (5.9) the shapes of a self-intersecting torus which resembles
an apple and of an American football.

How to obtain from the amplitudes a1, b1, and b2 the orientation-dependent polymer-
induced interaction between particles is discussed in section 6. While the preferential alignment
of two identical small particles is always parallel to their distance vector, see equation (6.4),
the alignment of a particle with respect to a wall changes from perpendicular to parallel on
decreasing the particle–wall distance; see equation (6.1). It would be interesting to check our
predictions with simulations or real experiments.

The simple and general forms (3.6) and (3.8) of the density of the conformal stress tensor
in a wedge and outside a dumbbell or lens, with eigenvectors shown in figure 2, follow from
combining symmetries of the two geometries; see the end of section 3. We show in appendix C
that the sum (4.2) of canonical tensor and improvement term is a conformal tensor, while
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the separate terms are not and have densities with a more complicated form as discussed in
appendix B.
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Appendix A. Continuity equation in the wedge

Here we show that the �-independence of the prefactor τi, j in (3.6) follows from the continuity
equation. For convenience we choose Cartesian axes perpendicular to the edge in the � = 0
and � = π/2 half planes and denote them by indices v and w, respectively, so that

(r̂v, r̂w) = ρ(cos �, sin �),

(u(n)
v , u(n)

w ) = (− sin �, cos �),
(A.1)

and (
ρ∂�/∂ r̂v, ρ∂�/∂ r̂w

∂ρ/∂ r̂v, ∂ρ/∂ r̂w

)
=

( − sin �, cos �

cos �, sin �

)
. (A.2)

Substituting (3.6) with τi, j (α) → τi, j(α,�) into the two continuity equations [10]

∂〈Tvv〉wedge/∂ r̂v + ∂〈Tvw〉wedge/∂ r̂w = 0

∂〈Twv〉wedge/∂ r̂v + ∂〈Tww〉wedge/∂ r̂w = 0,
(A.3)

using (A.1), and calculating the derivatives by means of the chain rule and (A.2), one finds that
the ρ-derivatives of the prefactor ρ−d cancel the �-derivatives of the eigenvector u(n). Only
the �-derivatives of τ remain, and the left-hand sides of the first and second equation (A.3)
are given by (∂τ/∂�)(d − 1)/ρd+1 multiplied by sin � and − cos �, respectively. Thus each
of the two equations implies that τ is independent of �.

Appendix B. Wedge with α = π/2

The propagator 〈ϕ̂12〉wedge for the Gaussian model in a wedge with Dirichlet boundary
conditions and α = π/g, with g an integer, can be obtained by the method of images. Besides
the half space (α = π) we consider here the simplest case of a wedge with α = π/2 in which
there are three images. With the notation

r̂xi = Xi , r̂yi = Yi (B.1)

for the components of

r̂i = (r̂ei , r̂xi , r̂yi); i = 1, 2 (B.2)

perpendicular to the edge along Cartesian axes in the two boundary half planes � = −π/4
(i.e. Y = 0, X � 0) and � = π/4 (i.e. X = 0, Y � 0), the propagator at the critical point has
the form (4.5) with

〈ϕ̂12〉bulk = S̃d [e2
12 + (X1 − X2)

2 + (Y1 − Y2)
2]−(d−2)/2, (B.3)

and

δ〈ϕ̂12〉wedge = S̃d{−[e2
12 + (X1 + X2)

2 + (Y1 − Y2)
2]−(d−2)/2

+ [e2
12 + (X1 + X2)

2 + (Y1 + Y2)
2]−(d−2)/2

− [e2
12 + (X1 − X2)

2 + (Y1 + Y2)
2]−(d−2)/2}. (B.4)

Here e2
12 ≡ (r̂e1 − r̂e2)

2, and S̃d is defined in (4.1).
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Letting r̂1 → r̂, r̂2 → r̂ on the right-hand side of (B.4) leads to the boundary-induced
profile

−Ē(ρ/2)2−d
√

2 ≡ 〈�2(r̂)〉wedge2d−2/S̃d = −X2−d − Y 2−d + ρ2−d (B.5)

of the energy density in (4.1), which due to

X ≡ r̂x = ρ(cos � − sin �)/
√

2, Y ≡ r̂y = ρ(cos � + sin �)/
√

2 (B.6)

is in accordance with the general form (3.1) of a scalar density with bulk exponent xO = d −2.
It diverges on approaching the boundary planes � = ±π/4.

For the boundary-induced densities of the canonical stress tensor (4.3) and the
‘improvement’-term (4.4),(〈T (can)

κλ (r̂)〉wedge, 〈−Iκλ(r̂)〉wedge
) = (d − 2)S̃d 2−d

(
Tκλ,−Jκλ

)
, (B.7)

equation (B.4) yields

Txx = (d − 2)Y −d + dρ−d−2 X2 − (d − 1)ρ−d

Txy = dρ−d−2 XY
Teβeβ = (d − 2)

(
X−d + Y −d

) − (d − 3)ρ−d
(B.8)

and

−Jxx = −(d − 2)Y −d − [d(d − 2)/(d − 1)]ρ−d−2 X2 + (d − 2)ρ−d

−Jxy = −[d(d − 2)/(d − 1)]ρ−d−2 XY
−Jeβeβ = −(d − 2)

(
X−d + Y −d

)
+ [(d − 2)2/(d − 1)]ρ−d .

(B.9)

Here eβ with β = 3, . . . , d runs over the d − 2 Cartesian directions of the edge-subspace. Tyy

and −Jyy follow from the above expressions for Txx and −Jxx on exchanging X and Y . All
other components of 〈T (can)〉 and 〈−I 〉 vanish by symmetry.

In the sum Tκλ−Jκλ all contributions proportional to X−d and Y −d cancel, and the density
of the stress tensor T in (4.2) has the simple form of (3.6) with

τ (α = π/2) = 2−d d − 2

d − 1
S̃d (B.10)

implying

b2/Ld = −2(π/8)d/2/�(d/2) (B.11)

if one uses (3.15) with D/L = 1/
√

2 and the forms of BT below (4.4) and S̃d in (4.1).
However, the densities of T (can) and I separately have non-vanishing traces, with

Txx + Tyy +
d∑

β=3

Teβeβ = −〈(∇�)2〉2d−1/S̃d

= (d − 2)[(d − 1)(X−d + Y −d) − (d − 2)ρ−d ], (B.12)

and a more complicated form. For example, their diagonal components parallel to the edge,
and the trace (B.12), depend not only on ρ but, due to the terms ∝ X−d + Y −d , also on �, and
diverge on approaching the boundaries X = 0 or Y = 0. There is a corresponding divergence
of the diagonal components of T (can) and I parallel to a Dirichlet boundary wall for the half
space (α = π). Moreover, u(n) of equation (3.6) and figure 2 is, in general, not an eigenvector
of 〈T (can)〉, due to the terms proportional to Y −d and X−d in Txx and Tyy, respectively. In the
continuity equation satisfied by 〈T (can)〉, these terms do not contribute.
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Appendix C. Conformal stress density

Here we verify that in the Gaussian model the boundary-induced profile 〈T 〉, with T the
sum (4.2) of the canonical stress tensor and the improvement term, is a conformal tensor. For
a conformal transformation r̂′ → r′ which leads from a geometry Ĝ ′ to a geometry G ′, we
use the transformation law

δ〈�(r′
1)�(r′

2)〉G ′ = (b(r̂′
1)b(r̂′

2))
(d−2)/2δ〈�(r̂′

1)�(r̂′
2)〉Ĝ ′ (C.1)

for the propagator δ〈��〉 with bulk contribution subtracted as in (4.5). The dilatation
factor b(r̂′) of the transformation is defined below equation (3.9). Consider the boundary-
induced density 〈Tkl (r

′)〉G ′ , where Tkl follows from (4.2) on replacing (κ, λ, r̂) by (k, l, r′).
As in appendix B, each of its contributions follows from the subtracted propagator on
the left-hand side of (C.1) by appropriate differentiations, where for the terms in −〈Ikl 〉G ′

and 〈T (can)

kl 〉G ′ the arguments r′
1 and r′

2 are set equal to r′ before and after differentiating,
respectively. Following the same steps on the right-hand side of (C.1), one finds that in the
sum 〈Tkl 〉G ′ = 〈T (can)

kl 〉G ′ − 〈Ikl 〉G ′ the contributions involving r′-derivatives of b that come
from calculating T (can) cancel the contributions involving r′-derivatives of ∂ r̂′/∂r′ and b that
come from calculating −I and one is left with the transformation formula

〈Tkl (r
′)〉G ′ =

∑
κ,λ

bd−2(r̂′)

(
∂ r̂ ′

κ

∂r ′
k

)(
∂ r̂ ′

λ

∂r ′
l

)
〈Tκλ(r̂

′)〉Ĝ ′ (C.2)

of a conformal tensor. In general T (can) and I separately do not satisfy a transformation law
of the form of (C.2). It is instructive to explicitly check the above arguments for the inversion
r̂′ = L2r′/r ′2, where

∂ r̂ ′
κ

∂r ′
k

= b(r̂′)Iκ,k(r
′), b(r̂′) = L2

r ′2 , (C.3)

with I defined in equation (3.12), and where (C.2) reduces to the transformation law of
equations (2.36) and (2.37) in [9].

The transformation formula (C.2) for the stress tensor density is also expected to apply
beyond the Gaussian model. Given in geometry Ĝ ′ an eigenvector of 〈T (r̂′)〉Ĝ ′ which points
along a certain distance vector dr̂′ and belongs to an eigenvalue t̂ , equation (C.2) implies in
geometry G ′ an eigenvector of 〈T (r′)〉G ′ which points along the corresponding distance vector
dr′ and belongs to the eigenvalue bd(r̂′)t̂ .

Appendix D. Stress amplitude for arbitrary opening angle

It is convenient to calculate τ (α) from (3.6) with κ = λ equal to an edge direction eβ.
Using (4.2)–(4.4) and the property

2〈(∇�)2〉wedge = �〈�2〉wedge (D.1)

of the vanishing trace of 〈T (can) − I 〉wedge, this yields

τ (α) = ρd〈Teβeβ〉 = ρd

[
〈(�eβ)2〉wedge − 1

4(d − 1)
�〈�2〉wedge

]
, (D.2)

where

�eβ(r̂) = ∂�(r̂)/∂ r̂eβ. (D.3)

Since the boundary-induced profile

〈(�eβ(r̂))2〉wedge = lim
r̂1→r̂,r̂2→r̂

[〈�eβ(r̂1)�eβ(r̂2)〉wedge − 〈�eβ(r̂1)�eβ(r̂2)〉bulk] (D.4)
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is, apart from a factor S̃d , analytic (see footnote 4) in d , the calculation proceeds similar
to (4.11)–(4.17). We consider d < 0, where

〈�eβ(r̂1)�eβ(r̂2)〉bulk = (d − 2)[|r̂1 − r̂2|2 − d(r̂1eβ − r̂2eβ)2]|r̂1 − r̂2|−2−d S̃d (D.5)

does not contribute on the right-hand side of (D.4), and find for � = 0

ρd〈(�eβ(r̂))2〉wedge|�=0 = 2π(2−d)/2 1

α�(1 − (d/2))
Je, (D.6)

with

Je =
∫ 1

0
dt�d(t)t

π/α 1

1 − t2π/α
, (D.7)

where

�d(t) = t (d−2)/2(1 − t)−d . (D.8)

Here we have rewritten 〈(�eβ)2〉wedge as
∑

β〈(�eβ)2〉wedge/(d − 2) and used equations (4.7)
and (4.8) with 2A = d . The integral (D.7) converges for −2π/α < d < 0.

Writing Je as the sum of

J (1)
e =

∫ 1

0
dt�d(t)t

π/α

[
1

1 − t2π/α
− k(t)

]
(D.9)

and

J (2)
e =

∫ 1

0
dt�d(t)t

π/αk(t), (D.10)

with

k(t) = α

2π

1

1 − t
+

1

2

(
1 − α

2π

)
+

1

24

(
2π

α
− α

2π

)
[2(1 − t) + (1 − t)2], (D.11)

the continuation to d = 3 leads to

J (2)
e (α, 3) = 1

72

[(
2π

α

)2

− 1 + 6
α

2π

]
, (D.12)

yielding

〈(�eβ(r̂))2〉wedge|�=0ρ
d = − 1

απ
[J (1)

e (α, 3) + J (2)
e (α, 3)] (D.13)

in d = 3 where J (1)
e (α, 3) follows from (D.9) on replacing �d by �3 = t1/2(1 − t)−3.

In the second contribution to τ in (D.2),

ρd�〈�2〉wedge = −√
2S̃d {∂2

�Ē + (d − 2)2Ē} (D.14)

can, for � = 0 and d = 3, be expressed by e0 and e2 in (4.17), (4.18), so that

τ (α) = − 1

απ
[J (1)

e (α, 3) + J (2)
e (α, 3)] +

1

16
√

2π
e0(α)[e2(α) + 1]. (D.15)
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